
FIR filter design with Python and SciPy

Matti Pastell

15th April 2013

1 Introduction

This an example of a script that can be published using Pweave. The script can be executed
normally using Python or published to HTML with Pweave Text is written in markdown in lines
starting with “#%%” and code is executed and results are included in the published document. The
concept is similar to publishing documents with MATLAB or using stitch with Knitr.

Notice that you don’t need to define chunk options (see Pweave docs), but you do need one line
of whitespace between text and code. If you want to define options you can do it on using a line
starting with #%%+. just before code e.g. #%%+ term=True, caption='Fancy plots.'. If
you’re viewing the HTML version have a look at the source to see the markup.

The code and text below comes mostly from my blog post FIR design with SciPy, but I’ve updated
it to reflect new features in SciPy.

2 FIR Filter Design

We’ll implement lowpass, highpass and ’ bandpass FIR filters. If you want to read more about
DSP I highly recommend The Scientist and Engineer’s Guide to Digital Signal Processing which
is freely available online.

2.1 Functions for frequency, phase, impulse and step response

Let’s first define functions to plot filter properties.

from pylab import *
import scipy.signal as signal

#Plot frequency and phase response
def mfreqz(b,a=1):

w,h = signal.freqz(b,a)
h_dB = 20 * log10 (abs(h))
subplot(211)
plot(w/max(w),h_dB)
ylim(-150, 5)
ylabel(’Magnitude (db)’)
xlabel(r’Normalized Frequency (xπrad/sample)’)
title(r’Frequency response’)
subplot(212)
h_Phase = unwrap(arctan2(imag(h),real(h)))

1

http://mpastell.com/pweave
http://mathworks.com
http://http://yihui.name/knitr/demo/stitch/
http://mpastell.com/pweave/usage.html#code-chunk-options
FIR_design.py
http://mpastell.com/2010/01/18/fir-with-scipy/
http://www.dspguide.com/

plot(w/max(w),h_Phase)
ylabel(’Phase (radians)’)
xlabel(r’Normalized Frequency (xπrad/sample)’)
title(r’Phase response’)
subplots_adjust(hspace=0.5)

#Plot step and impulse response
def impz(b,a=1):

l = len(b)
impulse = repeat(0.,l); impulse[0] =1.
x = arange(0,l)
response = signal.lfilter(b,a,impulse)
subplot(211)
stem(x, response)
ylabel(’Amplitude’)
xlabel(r’n (samples)’)
title(r’Impulse response’)
subplot(212)
step = cumsum(response)
stem(x, step)
ylabel(’Amplitude’)
xlabel(r’n (samples)’)
title(r’Step response’)
subplots_adjust(hspace=0.5)

2.2 Lowpass FIR filter

Designing a lowpass FIR filter is very simple to do with SciPy, all you need to do is to define the
window length, cut off frequency and the window.

The Hamming window is defined as: w(n) = α− β cos 2πn
N−1 , where α = 0.54 and β = 0.46

The next code chunk is executed in term mode, see the Python script for syntax. Notice also that
Pweave can now catch multiple figures/code chunk.

n = 61
a = signal.firwin(n, cutoff = 0.3, window = "hamming")
#Frequency and phase response
mfreqz(a)

2

FIR_design.py

0 10 20 30 40 50 60
n (samples)

0.0

0.1

0.2

0.3
Am

pl
itu

de
Impulse response

0 10 20 30 40 50 60
n (samples)

0.0

0.5

1.0

Am
pl

itu
de

Step response

show()
#Impulse and step response
figure(2)

<matplotlib.figure.Figure at 0x7f0839549b70>

<matplotlib.figure.Figure at 0x7f0839549b70>

impz(a)

3

0 10 20 30 40 50 60
n (samples)

0.0

0.1

0.2

0.3
Am

pl
itu

de
Impulse response

0 10 20 30 40 50 60
n (samples)

0.0

0.5

1.0

Am
pl

itu
de

Step response

show()

2.3 Highpass FIR Filter

Let’s define a highpass FIR filter, if you compare to original blog post you’ll notice that it has
become easier since 2009. You don’t need to do ’ spectral inversion “manually” anymore!

n = 101
a = signal.firwin(n, cutoff = 0.3, window = "hanning", pass_zero=False)
mfreqz(a)
show()

4

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (x rad/sample)

150

100

50

0
M

ag
ni

tu
de

 (d
b)

Frequency response

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (x rad/sample)

100

50

0

Ph
as

e
(ra

di
an

s)

Phase response

2.4 Bandpass FIR filter

Notice that the plot has a caption defined in code chunk options.

n = 1001
a = signal.firwin(n, cutoff = [0.2, 0.5], window = ’blackmanharris’, pass_zero = False)
mfreqz(a)
show()

5

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (x rad/sample)

150

100

50

0

M
ag

ni
tu

de
 (d

b)

Frequency response

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (x rad/sample)

400

200

0

Ph
as

e
(ra

di
an

s)

Phase response

Figure 1: Bandpass FIR filter.

6

