FIR filter design with Python and SciPy

Matti Pastell
http://mpastell.com

15th April 2013

1 Introduction

This an example of a document that can be published using Pweave. Text is written using IXTEX
and code between <<>> and @ is executed and results are included in the resulting document.

You can define various options for code chunks to control code execution and formatting (see
Pweave docs).

2 FIR Filter Design

We’ll implement lowpass, highpass and “ bandpass FIR filters. If you want to read more about
DSP I highly recommend The Scientist and Engineer’s Guide to Digital Signal Processing which
is freely available online.

2.1 Functions for frequency, phase, impulse and step response

Let’s first define functions to plot filter properties.

from pylab import =
import scipy.signal as signal

#Plot frequency and phase response
def mfreqgz (b,a=1):
w,h = signal.freqgz (b, a)
h dB = 20 % loglQO (abs(h))
subplot (211)
plot (w/max (w) , h_dB)
ylim(-150, 5)
ylabel (Magnitude (db)’)
xlabel (r’'Normalized Frequency (x$\piSrad/sample)’)
title(r’Frequency response’)
subplot (212)
h_Phase = unwrap (arctan?2 (imag (h), real (h)))
plot (w/max (w) ,h_Phase)
ylabel (' Phase (radians)’)
xlabel (r’'Normalized Frequency (xπrad/sample)’)
title(r’Phase response’)
subplots_adjust (hspace=0.5)

#Plot step and impulse response

http://mpastell.com
http://mpastell.com/pweave
http://mpastell.com/pweave/usage.html#code-chunk-options
http://www.dspguide.com/

def impz(b,a=1):

1 = len(b)

impulse = repeat (0.,1); impulse[0] =1.
X = arange (0, 1)

response = signal.lfilter(b,a,impulse)

subplot (211)

stem(x, response)

ylabel ("Amplitude’)

xlabel (r'n (samples)’)
title(r’ Impulse response’)
subplot (212)

step = cumsum(response)
stem(x, step)

ylabel (Amplitude’)

xlabel (r'n (samples)’)
title(r’ Step response’)
subplots_adjust (hspace=0.5)

2.2 Lowpass FIR filter

Designing a lowpass FIR filter is very simple to do with SciPy, all you need to do is to define the
window length, cut off frequency and the window.

The Hamming window is defined as: w(n) = a — 3 cos 2%, where a = 0.54 and 3 = 0.46

The next code chunk is executed in term mode, see the source document for syntax. Notice also
that Pweave can now catch multiple figures/code chunk.

n = 61

a = signal.firwin(n, cutoff = 0.3, window = "hamming")
#Frequency and phase response

mfreqgz (a)

Impulse response

0.3 ¢
5 0.2 -
2
5 0.1 -
£
< 0.0
0 10 20 30 40 50 60
n (samples)
Step response
1.0 A M
[
©
2
5 0.5
: |
0.0 M’
0 10 20 30 40 50 60
n (samples)
show ()
#Impulse and step response
figure (2)

| <matplotlib.figure.Figure at 0x7fa750299278>

| <matplotlib.figure.Figure at 0x7fa750299278>

impz (a)

Impulse response

0.3 A ®
B 0.2
=
a2 0.1 A
S
< 0.0
0 10 20 30 40 50 60
n (samples)
Step response
1.0 A M
<}
©
2
ol 0 5 -
< T
0.0 M’
0 10 20 30 40 50 60
n (samples)
show ()
2.3 Highpass FIR Filter
Let’s define a highpass FIR filter:
n = 101
a = signal.firwin(n, cutoff = 0.3, window = "hanning", pass_zero=False)
mfreqgz (a)
show ()

Frequency response

—_ O T
o]
°
o —-50-
©
B
S, —100 1
(©
=
_150 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xmrad/sample)
hase response
w97
e
.
©
© -50 -
[,
w0
©
£ —100 -

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xmrad/sample)

2.4 Bandpass FIR filter

Notice that the plot has a caption defined in code chunk options.

n 1001
a signal.firwin(n, cutoff = [0.2, 0.5], window = ’"blackmanharris’, pass_zeno = False)
mfreqgz (a)
show ()

Magnitude (db)

Phase (radians)

Frequency response

° |
_50 -
—100 A
_150 I\ Aﬂl I /\I -~ 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (xmrad/sample)
Phase response
0 .
—200 A
—400 A
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Frequency (xmrad/sample)

Figure 1: Bandpass FIR filter.

